Please use this identifier to cite or link to this item: https://cris.library.msu.ac.zw//handle/11408/6523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorL. Maregedzeen_US
dc.contributor.authorK. Chitekaen_US
dc.contributor.authorR. Masikeen_US
dc.contributor.authorT. Kanyowaen_US
dc.date.accessioned2025-03-04T14:28:06Z-
dc.date.available2025-03-04T14:28:06Z-
dc.date.issued2024-12-11-
dc.identifier.urihttps://cris.library.msu.ac.zw//handle/11408/6523-
dc.description.abstractOn average, approximately 40% of the total energy consumed by grinding comminution industries is attributed to industrial ball mills, underscoring the urgent necessity to address this energy consumption challenge. This study investigates the influence of lifter face angle variations on the performance of ball mills in comminution processes. Through a combination of Discrete Element Method (DEM) simulations and experimental design, the study explores the effects of lifter face angle on energy efficiency, wear rates, and comminution effectiveness. Findings reveal that smaller lifter face angles result in increased scattering of ore particles within the mill, while larger angles lead to reduced wear and improved grindability of materials. The optimal lifter face angle is identified as approximately 24.8°, falling within the typical range used by industrial ball mill accessories manufacturers. An overall energy saving of 5.89% is achieved by using the optimum ball mill lifter face angle of 24.8°. Recommendations for future research include further exploration of optimal parameters, experimental validation of findings, and the development of advanced modelling techniques. By implementing these recommendations, the study aims to contribute to enhanced efficiency, durability, and sustainability in ball mill operations.en_US
dc.language.isoenen_US
dc.publisherCentro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexicoen_US
dc.relation.ispartofJournal of Applied Research and T echnologyen_US
dc.subjectBall mill energy optimizationen_US
dc.subjectball mill operational efficiencyen_US
dc.subjectdiscrete element modellingen_US
dc.subjectresponse surface modellingen_US
dc.subjectcomminution processesen_US
dc.titleBall mill energy efficiency optimization: A lifter face angle optimization approachen_US
dc.typeresearch articleen_US
dc.identifier.doihttps://doi.org/10.22201/icat.24486736e.2024.22.6.2624-
dc.contributor.affiliationMidlands State University, Zvishavane Campus, Zimbabween_US
dc.contributor.affiliationUniversity of South Africa, Science Campus, Florida 1709, South Africaen_US
dc.contributor.affiliationHarare Institute of Technology, Harare, Zimbabween_US
dc.contributor.affiliationHarare Institute of Technology, Harare, Zimbabween_US
dc.relation.issn2448-6736en_US
dc.description.volume22en_US
dc.description.issue6en_US
dc.description.startpage798en_US
dc.description.endpage805en_US
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetyperesearch article-
item.fulltextWith Fulltext-
Appears in Collections:Research Papers
Files in This Item:
File Description SizeFormat 
Ball mill energy efficiency optimization.pdfAbstract9.26 kBAdobe PDFView/Open
Show simple item record

Page view(s)

50
checked on Mar 14, 2025

Download(s)

6
checked on Mar 14, 2025

Google ScholarTM

Check

Altmetric


Items in MSUIR are protected by copyright, with all rights reserved, unless otherwise indicated.