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Abstract

Estimations of available fuelwood resources in communal savanna woodlands are widely based on
conventional terrestrial and optical remote sensing approaches, which are constrained by limited geographic
footprints and the use of leaf area indices and normalised difference vegetation indices, as surrogates for
above ground biomass. As a result, reliable information about the location and estimated quantities of
available woody biomass is scarce at local, national and global scales. Recent developments have shown
that classification of backscatter information contained in full polarimetric radar retrievals from satellite
borne sensors can discriminate between woody and non-woody vegetation. The intensity of the backscattered
signal has been shown to be sensitive to above ground biomass density. However, no such studies have
been reported across African savanna woodlands. This paper presents a study which used full polarimetric
ALOS PALSAR retrievals to map and quantify fuelwood resources in communal savanna woodland in
Welverdiend village, South Africa. Unsupervised entropy/alpha angle Wishart classification and maximum
likelihood classification procedures are used to characterise the scattering classes from the ALOS PALSAR
retrievals into eight major terrain scattering mechanisms. Five vegetation classes (random anisotropic,
forest double bounce, vegetation, dihedral and dipole) are identified that are closely related to backscattering
from woody vegetation components. Correlations between backscatter intensities acquired under dry and
wet conditions with above-ground biomass densities estimated from field surveys are investigated to derive
equations for predicting biomass densities. The regression analysis supports findings of similar studies
where the HV backscatter intensity showed moderately strong relationship (R2>0.6) with above ground
biomass densities. The inverted regression equations were used to estimate the biomass densities for areas
covered with woody vegetation. Knowledge about the location and distribution of woody biomass has
significant implications for fuelwood management and carbon sequestration initiatives. A combination of
woodland management interventions, coupled with the transition to modern energy sources, has the potential
of turning communal woodlands into carbon sinks.

Keywords: full polarimetric, synthetic aperture radar, above-ground woody biomass,
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Introduction

Communal woodlands provide the bulk
of woody biomass used for domestic
cooking and heating energy in most
rural and low-income urban communities
in sub-Saharan Africa. The scarcity of
contemporary information on above
ground woody biomass stock in
communal African savanna woodlands
and on rates of production and
regeneration is posing a major challenge
in modelling domestic energy demand
and supply atlocal levels (Banks et al, 1996;
Von Maltitz & Scholes, 1995). At the same
time, the exploitation of traditional
biomass resources, for cash and
mercantile purposes, is leading to
accelerated losses of carbon sinks, natural
forests and biodiversity, as well as creating
local scarcity of fuelwood. Carbon stocks
in communal woodlands are becoming
crucial input for the reporting
requirements of international conventions
such as Reducing Emissions from
Degradation and forest Deforestation
(REDD) (Mitchard et al., 2009; Ryan et al.,
2011; Woodhouse et al., 2009).

Ground surveys and optical remote
sensing approaches for mapping and
estimating biomass are well
documented. Ground based techniques
are tedious, time-consuming and have
limited geographic coverage (Bombelli
et al., 2009; Das & Ravindaranth, 2007;
Lu, 2006). Optical remote sensing
approaches are affected by cloud cover
and rely on proxies to estimate biomass.
On the other hand, synthetic aperture
radar remote sensing techniques have
been used successfully to estimate
above-ground biomass in several studies
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of boreal and temperate forests (Rauste,
2005; Santoro et al., 2009). However,
there is no widespread application of full
polarimetric synthetic aperture remote
sensing approaches to estimate woody
biomass as indicated by the scarceness
of relevant literature, especially over the
African continent. The few available
studies have used fine beam dual
polarisation retrievals (Ryan et al., 2011;
Mitchard et al., 2009; Woodhouse et al.,
2009) as opposed to full polarimetric
retrievals.

Optical remote sensing approaches use
leaf area indices and normalised
difference vegetation indices as
surrogates for woody biomass that are
affected by seasonality and plant
senescence. These indices are not
directly related to the interactions of the
optical signals with tree trunks or
branches that constitute the bulk of
above ground woody biomass. On the
other hand, microwave retrievals are
insensitive to weather conditions and the
microwave signal interacts directly with
tree trunks and branches. There has
been a rapid evolution of techniques
which can decompose the signals arising
from interactions of microwave signals
with vegetated terrain surfaces, derived
from synthetic aperture radar (SAR)
retrievals (Cloude & Pottier, 1997;
Freeman & Durden, 1998; van Zyl,
1989; Yamaguchi et al., 2005). In
particular, the decomposition technique
developed by Cloude and Pottier can
extract entropy, alpha angle and
anisotropy parameters from full
polarimetric retrievals (Cloude & Pottier,
1997). These parameters have been used
with the unsupervised classifier to
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identify terrain scattering mechanisms.
It has been shown that woody
vegetation is associated with anisotropic
scattering, forest double bounce,
random anisotropic scattering, dihedral
and dipole scattering classes (Lee &
Pottier, 2009; Touzi et al., 2004).

The intensity of the backscattered signal
from synthetic aperture radar remote
sensing retrievals has been correlated
with above-ground biomass in studies
of boreal and temperate biomes. Several
studies have established the relationship
between above-ground biomass density
and backscatter intensity for savanna
woodlands in Australia (Collins et al.,
2009; Liang et al., 2005; Lucas et al.,,
2006; Lucas et al., 2004; Lucas et al.,
2002), Brazil (Narvaes et al., 2007; Santos
et al., 2002), Belize (Viergever, 2008) and
Africa (Ryan et al., 2011; Mitchard et al.,
2009; Woodhouse et al., 2009). Results
from these studies have shown relatively
strong correlation between above-
ground biomass density and backscatter
intensities from L-band HH and HV
polarised retrievals. Saturation levels of
the backscatter intensity to biomass for
L band retrievals ranges between
60 t ha-1 and 150 t ha-1 (Mitchard et al.,
2009; Santoro et al., 2006; Santos et al.,
2002; Viergever et al., 2007). The HV
backscatter retrievals are least affected
by forest type, and are not sensitive to
ground moisture, slope and roughness
variations (Leckie, 1998).

This paper presents the application of full
polarimetric ALOS PALSAR retrievals in
mapping and estimating above ground
woody biomass resources in semi-open
African savanna, demonstrated on a case
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study for Welverdiend village in the
Mpumalanga Province of South Africa.
The approach combines classification
procedures to extract terrain features,
based on their polarimetric scattering
mechanisms, and regression analysis to
produce woody biomass distribution
maps and related biomass estimates.

Description of case study area

In 2006, the VW Foundation funded the
BioModels project, a multi-institutional
and interdisciplinary bioenergy
modelling project that sought to provide
stakeholders with quantitative
information on available woody biomass
resources and their utilisation in selected
rural communities in South Africa,
Mozambique and Zambia3. In South
Africa, Welverdiend village, in the
Mpumalanga province was chosen as an
existing research site with extensive local
data on utilisation of heavily depleted
woodland resources. The selection of
Welverdiend village was also influenced
by the availability of digital spatial
datasets, aerial photographs, high
resolution digital elevation models and
meteorological information.

The savanna woodlands in the case study
site are spatially heterogeneous, with
varying vertical and crown structures
(Campbell et al., 1996). The savanna
woodlands are characterised by
discontinuous woody crown cover taller
than 2 m, with herbaceous cover
dominated by varying grass densities
(Nangendo, 2005; Rutherford et al.,,
2006; Scholes & Archer, 1997; White,
1983). Savanna woodlands have an
assortment of deciduous fine leafed and
broad-leafed trees, interspersed with

8/14/2015, 7:00 PM



Midlands State University Journal of Science, Agriculture and Technology Volume 4(1), 2013

seasonally wet grassy depressions (Campbell et al., 1996). The Mimosaceae family
dominates fine-leafed savannas, found in low-lying arid areas with well-drained
and nutrient rich soils. Broad-leafed savannas are dominated by trees from the
Combretaceae and Cesalpinoideae families, with dominant Brachystegia,
Julbernardia and Isoberlinia species occurring mostly in high rainfall areas with
well-drained, nutrient-poor soils (Rutherford et al., 2006; Scholes, 1997).

Methods
An integrated approach was adopted that includes field assessment surveys of

woody biomass in test plots, extraction of normalised backscatter intensities from
POLSAR retrievals and predictive analysis (Figure 1).
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Figure 1: Overall above-ground woody biomass estimation procedure

1.1  SAR retrievals

The study was carried out using full polarimetric ALOS PALSAR level 1.1 retriev-
als acquired in 3 November 2008 (PSR_MMC_TP_0003140001) and 6 May 2009
(PSRMMC_TP_0004483001) over Welverdiend village (24°30” S, 31°16” E). The
images were acquired courtesy of the European Space Agency (ESA) under the
Principal Investigator Project (CIP.6143) on “Quantifying above ground woody
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biomass in communal African savanna
woodlands using fully polarimetric L-
band data”. Analysis of the meteorologi-
cal information indicate wet conditions
for retrievals acquired in November 2008
and dry conditions for the May 2009 ac-
quisitions. An average of 12mm of rain-
fall was recorded prior to the November
acquisition while no rain was recorded
ten days before the May acquisition.

1.2 Field assessment surveys

Comprehensive field assessment surveys
were undertaken to measure biomass
quantities in selected sampling plots to
provide training data for estimating
above-ground woody biomass from
remote sensing approaches. The surveys
included training plot selection, tree
parameter measurement and above-
ground biomass estimation at plot level.
The locations of training plots were
dictated by the broader needs of the VW
Foundation Biomodelling project and
were confined to areas where villagers
collect fuelwood resources. Training
plots are strategically located along linear
transects, radiating from the centre of
Welverdiend village, to capture changes
in vegetation with the increased walking
distances from the village. Training plots
are located at the near, mid and far range
from the centre to span a range of
biomass densities, from lowest to
highest. Plots in the near range were
located at a minimum distance of 350 m
from any households or agricultural
fields. Twenty four training plots were

identified from visual interpretation of
available optical satellite imagery, aerial
photographs and information about the
village boundaries, households and
agricultural fields.

Topographic mapping and baseline
sampling approaches were used to
sample trees in training plots. The
topographic mapping approach uses
reference points that were established
using an OmniSTAR® real time
differential Global Positioning System
(GPS) system. Surveying instruments
(Total Station) were used to take distance
and direction measurements from the
reference points to trees marking the
extent of training plots which are used
to compute bounding coordinates. The
centre points of the baseline sampling
approach were located using a hand held
GPS receiver. The topographic mapping
approach employed a radiation method
to establish the geographic position and
height of every sampled tree by
observing the zenith angle, slope
distance and direction from a Total
Station instrument set up over a
reference point (Ghilani & Wolf, 2008;
Uren & Price, 2010). In the baseline
sampling approach, a 50 m baseline was
used with 5 m wide transects taken at
5 m intervals perpendicular to the
baseline. For each sampled tree,
diameter at ankle' height was recorded.
The biomass for each sampled tree is
computed from the diameter at ankle
height measurements and allometric
equations for savanna woodlands.

! The growth habit of many savanna species is multi-stemmed from ground level, so the conventional approach
of measuring stem diameter at chest height is not appropriate in these woodlands.
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Biomass = 0.035*D??
Equation 1

where D is the diameter at ankle height
(Netshiluvhi & Scholes, 2001).

1.1 Regression analysis

ALOS PALSAR retrievals were processed
to extract normalised backscatter
intensities after accounting for
topographic distortions (such as layover,
foreshortening and shadow effects)
(Lauknes & Malnes, 2004). The
processing chain used a suite of Gamma®
and PolsarproO remote sensing software
packages. The processing chain to extract
normalised backscatter intensities from
ALOS PALSAR retrievals included:
calibration and multi-looking;
resampling of the digital elevation model;
simulation of SAR image (by taking into
account the topography of the area under
investigation); creation of a lookup table
for geocoding the SAR retrievals to map
projection (cartographic) systems; and
topographic normalisation (Knuth, 2008).
The normalised backscatter intensity is
converted to backscatter coefficient
(sigma nought) using Equation 2.

Sigma nought (¢°) = 10 x log , (c)
Equation 2

where 6 is the normalised backscatter
intensity.
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The logarithmic relationship between
backscatter intensity and above ground
biomass density was determined from
the regression analysis of the correlation
between the ground inventory biomass
measurements and sigma nought (6°) of
HH, HV and VV retrievals. The twenty
four training plots provided limited
training dataset, hence, a bootstrapping
approach was introduced to generate a
large sample using the technique of
sampling with replacement (Moore et al.,
2009; Mutanga et al., 2005; Saatchi et al.,
2007a). The resampled datasets were
regressed against the training plot biomass
estimates to determine the resampled
dataset with the highest coefficient of
determination. The regression equations
are inverted to predict the above-ground
biomass density for given backscatter
intensity from each particular polarisation
channel. In general, the predicted above-
ground biomass density is calculated from
the Equation 3:

AGB — e(0'0+0'f)/K

P
Equation 3

where AGB, is the required above-ground
biomass density, ¢° is the mean sigma nought
value for SAR pixels, o’ is a constant associated
with the sigma nought from a specific
polarisation channel, and K is the slope of
the logarithm regression for the above-
ground biomass density for the respective
acquisition channel. The biomass
prediction equations were used with the
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training plot AGB densities to determine
their associated root mean square errors.

1.2Polarimetric decomposition and
classification

Algorithms developed by (Cloude & Pottier,
1997) and (Freeman & Durden, 1998) are
used to decompose the full polarimetric
ALOS PALSAR retrievals and to identify
terrain scattering mechanisms using a
combination of unsupervised classification
and the Maximum Likelihood
Classification procedures. The Cloude-
Pottier decomposition retrieves entropy,
alpha angle and anisotropy elements and
classifies from full polarimetric radar
retrievals into physical scattering
mechanisms by segmenting the H/a plane
(Cloude & Pottier, 1997). The entropy/alpha
segmentation plane is used to identify eight
scattering classes using the unsupervised
Wishart classification procedure. The
Freeman decomposition algorithm extracts
double, volume and surface scattering
which are used to generate RGB composites
over ALOS PALSAR scenes (Freeman &
Durden, 1998; Zhang et al., 2008). The
RGB composites represent double bounce,
volume and surface scattering mechanisms
asred, green and blue, respectively. Regions
with woody vegetation appear in shades of
green on the composite image.

The supervised maximum likelihood
classification procedure uses samples of
terrain scattering features from
unsupervised Wishart classification
procedure as training classes to extract
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refined classes from the RGB composite
of the Freeman decomposition elements.
The training datasets are subjected to the
Jeffries-Matusita separability test (Richards
& Jia, 2006; Riedel et al., 2008) before
running the maximum likelihood
classification procedure.

1.3 Woody biomass density estimation

Above-ground woody density is estimated
from normalised backscatter intensity
retrievals and biomass density prediction
equations. The woody vegetation map
generated from the supervised maximum
likelihood classification procedure is used
to mask areas of interest on the raster
image of derived biomass densities. The
resulting densities are classified into classes
with 20t ha' increments. A similar
classification approach was adopted by
(Saatchi et al., 2007b). The mean values
of the biomass density classes are used to
compute the available above-ground
biomass resources.

2 Results
2.1 Training plot biomass densities

Individual tree biomass was estimated
by applying allometric equations to tree
diameters measured at ankle height. The
plot biomass density was then calculated
from the sum of the sampled tree biom-
ass divided by the areal extent of each
training plot. The biomass densities ob-
tained from the field assessment survey
(Welverdiend village) are shown in Table 1.
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Table 1: Above-ground biomass densities from field assessment surveys (Welverdiend

village)
Training plot AG(]: lc:-ln)sity Training plot AG(]: ﬁ;n)sity
N1 1.7 SE2 2.8
N2 1.5 SE3 7.0
N3 0.8 Wi 249
NE1 5.5 W2 58
NE2 4.1 W3 14.5
NE3 0.7 W4 7.6
NW1 6.0 W5 80.4
NW2 3.9 North 2% 08
S1 1.5 North 3* 2.8
S2 45.3 West 6* 99
S3 4.7 North 1* 18
SE1 11.1 WLEC* 17.0
* Training plots sampled using topographic mapping. Baseline sampling was used for the other
training plots

The range of biomass densities was
consistent with reported densities for
savanna woodlands (Bombelli et al.,
2009; Chidumayo et al., 2002). The case
study area is characterised by relatively
short trees with an average height of 3
m. The bulk of sampled plots have
relatively low biomass levels due to
extensive exploitation of woody biomass
resources surrounding Welverdiend
village. As a result, the regeneration of
trees is constrained and they do not have
an opportunity to grow to larger size. In
general, the remaining taller trees are
fruit bearing trees protected by custom;
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these fruiting trees are not used for
fuelwood purposes.

1.1 Backscatter intensity and above-
ground biomass relationship

Normalised backscatter intensities for the
training plots were extracted from ALOS
PALSAR retrievals after geocoding and
correcting for topographic effects. The
normalised backscatter intensities were
converted to their sigma nought values
(Table 2) and regressed against the
biomass density estimates from the field
assessment surveys.
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Table 2 Mean sigma nought values for training plots around Welverdiend village

Sigma nought (dB)
Training plot AGB 3 November 2008 6 May 2009
(tha?)
HH HV \'A" HH HV vV
N1 1.7 -9.5 -159 -10.9 -12.3 -18.7 -13.7
N2 1.5 -11.2 -184 -124 -12.7 -18.7 -14.4
N3 0.8 9.4 -201 -12.0 -14.8 -20.7 -15.2
NE1 5.5 -12.7 -21.5 -12.2 -17.3 -23.2 -17.9
NE2 41 -11.6 215 -11.2 -16.1 -24.2 -16.3
NE3 0.7 -10.5 -202 9.8 -164 -21.2 -15.7
NW1 6.0 -6.2 -149 -11.0 -115 -17.6 -12.4
NW2 3.9 -8.9 -19.5 -10.5 -13.7 -19.6 -12.5
S1 1.5 9.3 -189 -124 -132 -20.5 -15.0
52 453 -8.6 -17.9 -10.9 -116 -18.4 -13.1
S3 4.7 9.0 -17.5 -10.0 -11.3 -17.4 -12.4
SE1 11.1 -9.5 -155 -10.0 -114 -17.1 -13.7
SE2 2.8 -8.6 -17.6 -11.0 -12.3 -19.4 -12.6
SE3 7.0 9.1 -183 92 -13.0 -18.3 -13.6
W1 249 -6.1 -14.7 92 -11.9 -18.6 -11.8
W2 5.8 -7.0 -163 97 -125 -18.6 -13.1
W3 145 -8.6 -17.0 -11.7 -133 -17.9 -13.0
W4 7.6 -83 -15.8 -10.0 -12.0 -18.6 -13.4
W5 80.4 -7.6 -144 94 -12.0 -18.9 -13.5
North 2 0.8 9.9 -182 -11.7 -13.0 -19.0 -15.0
North 3 2.8 -85 -20.0 -11.7 -145 -21.0 -14.8
WLEFC 17.0 -7.6 -17.8 -10.3 -12.8 -20.6 -14.6
West 6 9.9 -7.0 -141 94 -114 -16.3 -12.8
North 1 1.8 -10.3 -155 -10.9 -127 -19.7 -14.4

Results from the November 2008 HH, HV and VV polarisation retrievals yielded
relatively moderate correlation coefficients of 0.51, 0.48 and 0.50 (corresponding
R?values of 0.26, 0.23 and 0.24) respectively. The correlation coefficients for the
May 2009 HH, HV and VV polarisations retrievals were 0.44, 0.32 and 0.43,
respectively (with corresponding R* values of 0.19, 0.10 and 0.18). The results
seem to indicate that there is moderate correlation between backscatter intensity
and above ground biomass density for this region. The moderate correlations may
be due to the limited number of training plots that did not represent the full biomass
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density spectrum, coupled with PALSAR image georeferencing errors due to the
small size of the sampled training plots.

The training dataset above was subjected to bootstrapping and resampled datasets
with the highest coefficient of determination for each polarisation channel were
identified. The results of the regression analysis between the bootstrapped results
and sigma nought values are shown in Figure 2.
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Figure 2 Backscatter intensity and above-ground biomass density correlation diagrams for
wet and dry condition acquisitions

The central line shows regression equation or line of best fit, which was used to predict the backscatter
intensity (dependent) values given the above-ground biomass density (independent variable). The inner
and outer bounds indicate one and two standard deviation limits (66% and 95% confidence intervals,
respectively).
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The training dataset had few plots in the medium to high end of the biomass

density spectrum. As a result, the relationships are characterised by cluster of points

on the lower end of the biomass density spectrum. The HH and HV retrievals

acquired under dry conditions (May 2009) show relatively poor correlations with

above-ground biomass densities. The regression equations were inverted to derive

biomass density prediction equations according to Equation 3. A summary of the

fitted parameters to biomass density prediction equation are shown in Table 3.

Table 3 Summary of the results of regression analysis for Welverdiend training

dataset
Acquisition Polarisation 0'(0 (dB) K R R2 SE (dB)
HH -9.7 0.8 0.80 0.65 0.9
Nov 2008 HV -189 1.3 0.82 0.68 1.3
\AY% -11.5 0.6 0.87 0.76 0.5
HH -14.4 0.8 0.78 0.60 1.0
May 2009 HV -20.3 0.9 0.80 0.63 0.9
\'AY -15.0 0.5 0.78 0.61 0.7
November 2008 — summer, May 2009 — winter

The results show the general trend
expected of the relationship between
backscatter intensity and biomass
density. The relationship between HV
retrievals and biomass densities
appeared relatively strong for both wet
and dry condition acquisitions, with
R2 values of 0.68 and 0.63 respectively.
The result was consistent with previous
studies that had found significant
correlation between L-band HV
backscatter and above-ground biomass
density (Milne et al., 1999; Mitchard et

al., 2009; Rauste, 2005; Watanabe et al.,
2006). Mitchard et al. (2009) used ALOS
PALSAR retrievals acquired using the
tfine beam dual (FBD) polarisation mode.
The HV signal interacts with leaves, small
branches and tree stems, but is least
affected by forest type, topography and
ground surface conditions such as local
slopes, roughness and soil moisture
(Prakoso, 2006). It has been observed
that L-band HV retrievals have greater
dynamic hence,

range; greater

sensitivity to differing ranges of biomass
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than HH or VV retrievals (Le Toan et al.,
2004; Lucas et al., 2006).

HH, HV and VV retrievals observed under
wet conditions showed relatively high
correlation with biomass (R2 values greater
than 0.65), possibly because of the
moisture content in both soil and
vegetation that resulted in strong
backscatter returns for all channels.
However, the backscatter intensities
acquired using the HH and VV channels
during the dry condition showed
moderate correlation between observed
biomass densities. The moderate
correlation coefficient for the HH
polarisation was possibly because of the
absence of soil moisture to enable double
bounce backscattering of HH signals from
trunk and ground interaction. Biomass
prediction equations for HV polarisation
retrievals were adopted for the estimation
of woody biomass resources in the case
study villages.

Terrain feature classification

The ALOS PALSAR retrievals have of
9.37 m pixel spacing in slant direction and
an incidence angle of 23.1°, resulting in a
ground range resolution of 23.9 m. The
pixel spacing in the azimuth direction is
3.52 m. A multi-look ratio of 1:7 (one
ground range pixel to seven azimuth
direction pixels) was used to resample the
ALOS PALSAR retrievals to 25 m pixels.
The ALOS PALSAR data products were
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resampled using the nearest neighbour
algorithm to preserve the original data
values as much as possible (Knuth, 2008;
Werner et al., 2002).

The characterisation of the entropy/alpha
segmentation plane resulted in eight
scattering classes by discriminating
scattering from surface, volume and
double bounce mechanisms along the
alpha and entropy axes (Cloude & Pottier,
1997; Touzi et al., 2004). The scattering
fromnatural vegetation and some built up
areas is associated with volume and
multiple scattering corresponding to
dense, mixed and sparse woody vegetation
classes (multiple and volume scattering
components). Scattering over forested
areas is dominated by volume diffusion
while urban areas are mainly characterized
by double bounce scattering.

The training classes from the unsupervised
classification were used as training dataset
for the supervised maximum likelihood
classification procedure (Figure 3). An
overall classification accuracy of 87% and
a kappa coefficient of 0.77 were obtained
for the classified image (using scene
acquired in November 2008 over
Welverdiend Village).

12
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Figure3 Supervised maximum likelihood classification results of ALOS PALSAR
PSR_MMC_TP__0003140001 scene acquired in November 2008

The classification results show that built up areas are characterised by complex
scattering elements. Bare areas (including open grasslands) and agricultural fields
are dominated by rough and Bragg surfaces. This is evidenced on the eastern side
of Welverdiend village, which is dominated by basalt and gabbro derived soils.
Basalts are open grasslands characterised by heavy clayey soils (Mutanga et al.,
2004). Gabbro derived soils support open savanna vegetation characterised by dense
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grass cover with scattered trees and shrubs® This area is zoned for agricultural use and
communal grazing because of its relatively rich nutrient content. Cattle grazing, goat
browsing and fire activities have negative impact on the herbaceous cover, leading to
high proportions of bare ground and exposed soil (Petersen, 2006). Woody vegetation
is represented by random anisotropic, forestry double bounce, vegetation (anisotropic
particles), dihedral scattering and dipole classes, which are used to produce woody
biomass distribution maps.

Above-ground woody biomass estimates
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Figure4 Above-ground biomass density map of the entire ALOS PALSAR PSR_MMC_TP__0003140001 scene.

The area around Welverdiend village used for generating the training data is outlined in the upper region.

? http://www.environment.gov.za/environmetal_management_framework/vegetation.pdyf, accessed on 23 February 2012
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The biomass prediction equations were
applied to polarimetric retrievals
acquired under wet and dry conditions
in Welverdiend village (highlighted in
Figure 4 above). The total above-ground
woody biomass was estimated at
(23 +£2)x 103t and (48 £8) x 103 t
using  retrievals acquired in
November 2008 (wet condition) and
May 2009 (dry condition), respectively.
The difference between the estimates
(25 x 103 t) was more than twice
standard deviation of the estimate
(17 x 103 t). The difference may be due
to the effect of tree phenology and
weather conditions at the time of
acquisition on the backscattered signal.

Discussion

The selection of the site for the field
assessment surveys was constrained by
the design of the larger VW Foundation
BioModels project. The village we
selected is in a densely populated rural
region characterised by severe
degradation of the associated woody
biomass. As a result, the field biomass
densities (Table 1) do not represent the
full range encountered in most savanna
woodlands. There are more surveyed
plots at the lower end and very few in
the medium to higher end of the range.
Furthermore, the accuracy of estimating
above-ground biomass quantities in
surveyed plots was subject to several
factors: errors in tree diameter
measurements; omission of trees with
diameters below a certain minimum;
and the accuracy of the allometric
equations used for the given woodland
(Luckman et al., 1997; Mabowe, 2006;

Saatchi et al., 2007a). Moreover, many
savanna trees had morphology of
multiple stems that branched at ground
level, whereas current allometric
equations were derived using single
stemmed trees that branched well
above-ground (Netshiluvhi & Scholes,
2001). We recommend the
establishment of site-specific allometric
equations to improve the reliability of
relationship between biomass estimates
and backscatter intensities.

The raw data showed weak correlations
(R2 = 0.48 and 0.32) between above
ground biomass and HV polarised
backscatter intensity for retrievals
acquired under wet and dry conditions,
respectively. The initial results seemed
to imply that there was no robust
relationship between backscatter and
biomass in the study area. We then
applied a bootstrapping approach to
mitigate the effects of the limited
number of surveyed plots and sampled
the training dataset with replacement.
The resampled dataset with the highest
correlation coefficient was used to
determine the best regression equation
for each polarisation channel. The results
(Table 3) showed that the relationship
between above-ground biomass density
and sigma nought for the HV
polarisation retrievals was consistent
across weather (wet and dry) conditions,
with R2 values above 63%. This
observation is consistent with results
from studies in other biomes (Bombelli
et al., 2009; Das & Ravindaranth, 2007;
Fransson et al., 2007; Leckie, 1998). HH
and VV retrievals relate well to above-
ground biomass densities under wet
conditions due to the effect of moisture
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on the radar signal interaction with
vegetated terrain. Double bounce
scattering was more evident because of
the moisture content in both soil and tree
trunks (Kasischke et al., 1995; Santoro
et al., 2005).

The limited number of surveyed plots,
coupled with their poor distribution
across the range of biomass investigated,
presents a weak link in the correlation
between the above-ground biomass
densities and ALOS PALSAR backscatter
intensities. For this reason, the biomass
prediction equations presented in this
paper are not yet accurate enough for
monitoring applications. The equations
must be improved by undertaking
further field surveys using a larger
number of permanent plots to account
for variations in seasonal moisture, plant
phenology and biomass density
variations across the full spectrum of
savanna woodlands.

We used polarimetric decomposition
and classification algorithms to
successfully classify in terms of its
scattering mechanism. The woody
vegetation classes (random anisotropic,
forest double bounce, vegetation
(anisotropic), dihedral and dipole
scattering mechanisms) were found to
be closely related to the interaction of
the radar backscatter with the various
components of the woody vegetation.
These woody vegetation classes were
used to map the spatial distribution of
above-ground biomass within the
precincts of the Welverdiend village.
Information about the extent of live
woody biomass, coupled with equations
that allow estimation of its carbon
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content, is useful for determining
whether woodlands are carbon sources
or sinks. Where woodlands are
identified as carbon sources, funding
from carbon initiatives such as Reducing
Emissions from Deforestation and forest
Degradation (REDD) may be used to
support the transition to modern forms
of energy, hopefully resulting in reduced
dependence on fuelwood. Improved fire
management regimes and appropriate
fuelwood harvesting methods, which do
not denude vegetation cover while
maintaining continuous canopies, are
crucial for raising carbon storage
capacities of communal woodlands
(Thornley & Cannell, 2000). In order to
improve carbon estimates at local,
national and global scales, it is vital to
establish allometric equations for each
of the woody vegetation classes derived
from polarimetric classification.

Conclusion

The results presented in this paper
demonstrate the potential to map and
quantify above-ground woody biomass
in semi-open communal African
savanna woodlands using full
polarimetric spaceborne synthetic
aperture radar retrievals. Our approach
is particularly useful for woodland
practitioners as it provides estimates of
available biomass and its spatial
distribution. Such information is vital for
modelling the accessibility of communal
woodlands, mapping the available
herbaceous cover for grazing purposes
and the inclusion of communal
woodlands in  global carbon
sequestration initiatives. Although full
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polarimetric acquisitions at L band are
not widely available, the approaches
developed in this study have laid the
foundation for using full polarimetric
spaceborne retrievals from spaceborne
SAR missions (ALOS PALSAR, ALOS 11
and BIOMASAR) to map and quantify
woody biomass at the local, national and
global scales.
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