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Abstract

Most rural communities in southern Africa rely arefwood or charcoal to meet their
domestic energy demands. These energy sourcesaatigyraccessible and often the only
affordable means. Nevertheless, rising populati@msdies and poverty levels are
exerting pressure on unprotected natural woodlaimdsnany electrified communities,
high costs of electricity have prevented a moveyafam dependency on bio-energy.
Quantitative data on available woody biomass ikitay; influencing negatively on
energy planning policy and implementation. Conwerdl ground-based biomass
assessment methods are tedious and time-consuBpegies heterogeneity of savanna
woodlands poses challenges for both optical andrrmeemote sensing platforms. Optical
remote sensing techniques are constrained by atradspronditions as well as spectral
resolution to distinguish different tree specied awody biomass densities in large-scale
applications. Although satellite borne radar remsg@sing offers greater opportunities
for quantifying above-ground biomass, it is inhaditby the medium spatial resolution
and long repeat cycles of current platforms. A coration of allometric equations and
vegetation parameters from synthetic aperture ré8laR) data can be used to quantify
standing biomass. However, allometric equationsodien site specific and difficult to
extrapolate to landscape scales. This paper wslkudis opportunities and challenges
faced by natural resource practitioners when atteilggo assess and quantify woody
biomass in southern African savannas. The data sneed current availability of
appropriate imagery will be presented in the cantfxthe VW Foundation Bio-fuels
Modeling Project, covering Zambia, Mozambique andtB Africa.

Biomass energy in low-income communities

Biomass, mostly in the form of charcoal and fuelodpis the predominant source of
bioenergy in low income of rural and urban housétah southern AfricaBankset al,
1996;Wamukonya and Jenkink994]. In Mozambique, biomass (charcoal and fred)
provides up to 80% of energy consumption while 8f%ural households in Zambia use
fuelwood for cooking Brouwer and Falcdp 2004; Chidumaye 2002]. Many rural
households in South Africa use mainly fuelwood gadaffin for cooking and space
heating. In some cases, rural settlements deriygoapnately up to 90% of their
domestic energy from woodénkset al, 1996]. Rising population growth and persistent
poverty are increasing pressure on forest and vamodtesources, thereby, threatening
their sustainable utilisation. Signs of resourcpleliion as indicated by the distance of
preferred species from householtfoyvells et al. 2003] are beginning to show in certain
communal woodlands that are not subject to rigormaagement regimes. Policy-
makers in most developing economies lack knowlemlgeut the factors that determine
energy choices by rural consumev®h Maltitz and Scholed4995;Bankset al, 1996].



Data on standing woodland biomass volumes, spdisa&ibution and quality, and rate of
extraction is often lacking. Quantitative data @mwertible fuelwood resources provides
useful input for strategic energy planning and nliadepurposes. Macro-level strategic
energy planning is currently being compromised bg tise of generalized biomass
estimatesGrabitzki 2004]. Knowledge of existing woody biomass stosksourages the
adoption of mechanisms for sustainable utilizatbforest and woodland resources such
as issuing concessions on standing volumes ratherharvested volumeS¢bukeerat
al., 2006].

Rationale for quantifying fuelwood

Sustainable exploitation of woodland resources ireququantitative data relating to
biomass for fuelwood and charcoal, land and fooester, forest degradation, forest
function allocation, forest types, tree speciesedb products and land tenure among
others Boyd and Dansgn 2005]. Consequently, governments need to undertak
comprehensive inventories and valuation of forestd woodlands to ascertain if such
resources are being sustainably exploited in lifth ¥he objectives of the Millennium
Development Goals (MDGs) on sustainable environalenthanagement. This
information is also vital to militate against timeieasing pressure from rising populations
and poor economies. Biomass information and manegemmformation systems are
essential to provide decision-makers with a betteterstanding of how wood resources
are managed, harvested, transformed and eventailyerted to energy. According to
Masera et al. [2006], macro-level planning tools are necessaryatticulate local
heterogeneity at the regional and national leveterwexplicitly analyzing fuelwood
supply and demand at multiple-scaléabowe [2006] laments about the fragmented
approach to biomass data collection by various die@ats in Botswana and the lack of
comparable woody biomass datasets to assist degisaking processes. The rural
domestic energy sector is often given second pyiom policy planning and
implementation.

Southern African savanna woodlands are under isgrgdhreat of over-exploitation due
to higher demands for fuelwood and charcoal by lowome communities. In
Mozambique, Tanzania and Zambia, charcoal from conanwoodlands is exported to
urban centres for sale to low-income urban dwellkrt®ensive harvesting practices and
demands for arable farming land contribute to thetioued decrease in the availability
of plant specie preferred for fuel wood and chardé&dlegard et al, 2002; Watson
2002]. The exploitation of traditional biomass gyss for cash and/or mercantile
purposes (charcoal and lumber) is also leadingdelarated losses of natural forests and
biodiversity, as well as creating local scarcitybadmass l[Lasten2002; WEQ, 2006]. In
most African rural areas, quantitative data on wolbmass such as preferred fuelwood
tree species and their spatial distribution isrofeecking. Where such information exists,
it is too site specific and difficult to extrapadaimacro levels for energy planning
purposes. High costs of both ground-based assesamethods and high resolution
satellite images tend to contribute to this scgroftconvertible biomass datdfbowe
2006]. The problem is compounded by the of lacleasdo integrated systems that can
accommodate data from remote sensing, terrestbaérgations, and socio-economic



sources for assessing and monitoring sustainatitaction of biomass resources in
communal woodland®Berens2002].

Specific tree species are targeted for either faetivor charcoal production according to
their calorific value. Species heterogeneity ofesma woodlands poses great challenges
in discriminating such preferred woody biomassdree both optical and radar imagery.
Conventional ground-based methods for assessirg waody biomass are tedious and
time-consuming. Optical remote sensing techniquesanstrained by spectral saturation
and atmospheric conditions. While synthetic apertumdar techniques have shown
increased potential for large-scale biomass assrdsim temperate, boreal and tropical
forests, their application to subtropical savann@odlands is limited Ijnhoff, 1995;
Wallingtonet al, 2006].

Spatial data for biomass estimation

There is a growing need for applications that fgedntitative data into bioenergy models
to enhance energy planning for low-income commesiin developing countries. The
data includes temporal biomass data, preferred desris, spatial distribution of and
access to woody biomass resources. Extracting atatgpecific trees for fuelwood and
charcoal production from imagery requires data wiigh spatial resolution where
preferred tree species and their spatial distioutan be discriminated and mapped
respectively. Highly accurate ground truth surveye necessary to correlate field
positions with their corresponding aerial or s#tellmagery positions when assessing
and quantifying standing woody biomass. Recent rath& in spaceborne synthetic
aperture radar (SAR) remote sensing and GlobatiBosig Systems (GPS) technologies
coupled with geographic information systems (GI#¢rinnovative ways to quantify
and assess available woody biomass. GIS environprentdes a suitable platform for
visualizing, analyzing and interpreting energy dyies with a region and understanding
inter-linkages between parameters that make umpersystemsBiberacher 2006]. The
combination of both field and remotely sensed datables the calibration and large-
scale extrapolation of biomass data from localughoto global levels.

Terrestrial data

Tree species heterogeneity in savanna woodlandsresghat training data has minimal
target-to-image noise to enable the characterizatidree vegetation on both optical and
SAR imagery. The absolute positioning of treesriscal for correlating ground survey
measurements with the corresponding aerial phopbgrar satellite image positions if
spectral or polarization signatures are to be pedgimapped to corresponding tree
genera. For radar-based surveys, comner refleatbish reflect the radar signal directly
back to the sensor producing high returns and ‘weight spots on the imagery are
normally set out along the flight path as part leé tontrol points for site calibration
network Bantoset al, 2003; Short 1999]. The corner reflectors provide accurate
georeferencing data to overlay field survey and $Rge data. The accurate position of
the corner beacons and other topographical dsté#ed by Global Positioning Systems
(GPS) and conventional Electronic Distance MetddNE surveying techniques. While
Differential Global Positioning Systems give highdgcurate ground positions, EDM
surveying techniques compliment GPS measurementsibe GPS accuracy is degraded



when receivers are operated under dense tree esnflairadzayiet al, 2008]. Field
surveys conducted fan situ biomass measurements are also useful for cakigratnd
validating remotely-sensed data and to demarcaetrtiining areas with high spatial
accuracy.

Site calibration field surveys must be tied to comnnreference frameworks such as
national mapping systems or GPS networks to allasy éntegration of spatial woodland
information with data from other sectors. Althougbmmercial GPS base stations are
available, the required initial capital investmamd annual maintenance charges often
limit their use in developing countries. In Afric&PS networks are not yet fully
developed and South Africa is the probably the ayntry that has a well developed
GPS infrastructure. A unified African Reference rheavork (AFREF) is still in its
formative stages//onnacott2005;0ttichilo, 2007].

Remotely sensed data

Many research efforts are contributing towards development and use of remote
sensing methods in forest biomass estimation asdsament of woodland dynamics
[Koch et al, 2007;Patenaudeet al, 2005;Rosenqviset al, 2003]. A number of case
studies have shown the suitability of airborne apdceborne optical and radar sensors
for assessing and quantifying biomass in forestwwoddlands stretching from local to
regional scalesHussin 2007;Mette 2007]. Integration of data from various platforms
such as L-band, high frequency C and X-band syctlagterture radars and very high
resolution optical remote sensing sensors is offenew possibilities for quantifying and
assessing woody biomass. Although airborne andebpace Light Detection and
Ranging (LIDAR) systems have demonstrated greamiatl for estimating tree canopy
heights and providing high resolution digital eleea models, their widespread
application is generally limited by high cost amdadl geographic coveragélydeet al,
2006; Power et al, 2006]. This paper is focussing on capabilitiesl imitations of
spaceborne optical and radar sensors in providinggtde data for extracting woody
biomass estimates. These platforms are capablandistape assessment of available
standing biomass.

Optical data

Optical remotely sensed imagery is well suited dapturing horizontally distributed
conditions, structures and changdsodh et al, 2007; Patenaude 2003] but is
constrained by adverse atmospheric conditions asatlouds and haze, and in any case
surveys only the upper surface of the vegetatioropp Optical data archives include
data from LANDSAT missionsHillingsley, 1984] and declassified missions such as
CORONA. Optical data can be used to generate vagly hesolution digital terrain
models Bolon et al, 2007;Galiatsatoset al, 2008] and can provide useful input for
spatial-temporal analysis of woodland dynamics. rifitetive data on available biomass
is indirectly related to image characteristics amlially have to be inferred from
secondary parameters such as leaf area index gedatien indices.



Capabilities

Remote sensing at optical and infra-red wavelenigéssbeen successfully applied to the
problem of delineating clear-cutting and deforéstain areas where cloud-free images
are available $mithet al, 2002]. Optical remotely sensed data has been tesedap
broad vegetation types before allometric equatimese applied for indirect biomass
estimation. The allometric equations are derivedmfr parameters deduced from
vegetation indices and/or reflectan&atenaudg2003] gives comprehensive review of
satellite optical remote sensing platforms whiclvehavide applications in woodland
deforestation assessment and monitoring land ccvanges. A number of commercial
airborne and spaceborne platforms offer coarseety kigh resolution optical remote
sensing data that can be used for vegetation chaegection. Examples include
conventional aerial photography, PRISM, AVNIR-2,QKIOS, Quickbird, LANDSAT,
SPOT, and MODIS, among others. There are many s#reors still under development.

Limitations

Although cases abound of where optical remote sgrnisas been successfully used for
land cover detection, optical images are degradednlironmental conditions such as
cloud cover and hazeH[issin 2007; Prakosq 2006]. Direct estimation of biomass
volumes using optical remote sensing data is nesipte although land cover changes
can be correlated to biomass depletion or regdoaraiver given periods of time
[Patenaude 2003]. Such an approach is labour intensive astiils collecting data at
different times of the vegetation growth cycle aslo across the vegetation gradients.
The accurate representation of the magnitude aradiaspvariation in biomass is
influenced by the accuracy of determining the aitia equations and also the ability to
spectrally discriminate particular tree genera frmemotely sensed optical dataufas
and Tickle 1999]. Results for biomass estimation have bess ¢onvincing, particularly
in mature forests because the reflectance is mdelgrmined by canopy closure, tree-
storey leaf area index (LAI), species compositem] background reflectance, which are
only indirectly related to woody biomasSnith et al, 2002]. Mabowe [2006] also
concluded that estimating woody biomass in savamoadlands from optical remote
sensing is difficult because of poor correlatiorsA®een biomass quantities derived from
field observations and vegetation indices from higgolution IKONOS imagery.

Optical sensors are limited to detecting upper pasoof woodlands and cannot detect
under-storey woody biomass. Optical remote senslagsification and accuracies are
limited by geometrical and spectral resolution le¢ sensor as well as heterogeneity of
woodlands under investigatiomi[lingsley, 1984]. Features with more spectrally and
ecologically unique characteristics will be morewately discriminated. According to
Patenaud€g[2003], discriminating between diverse land usesgrising forests, crops,
and wetlands is likely to prove more accurate temies aiming to discriminate the
extent of selective destruction of vegetation witheterogeneous woodlands. This is an
interesting observation given that in Africa andigdscharcoal producers, timber and
fuelwood collectors tend to practice selectiveingtof trees based on size and species,
and also shifting cultivation and selective loggimas resulted in selected alteration of
woodlands rather than wholesale cleararBeyfl and Dansgn2005]. In the case of
savanna woodlands, grass-thatched dwellings artdvateld/grazing areas tend to give



similar spectral values during dry seasons reguitindifficulties to distinguish between
the two classes from optical imag&a[amuleniet al, 2007].

Radar sensors

The development and deployment of airborne and etjpane microwave synthetic
aperture radars (SAR) is improving the ability atural resource managers to map and
monitor woodland resources at landscape scaleer&eX, C to L-band sensors that
have been launched in the past include the ER&RSP, Radarsat-1 and Radarsat-2
carrying the C-band sensor; JERS-1 and PALSAR Lldbsensors; TerraSAR-X and
COSMO-SkyMed with X-band sensor. The availabilifyttoree different frequencies for
spaceborne radar data is leading to better retrigvanformation on forest status and
forest parameters because of increased spatideamgbral resolution and fully polarised
data [mhoff 1995;Kasischkeet al, 1997;Kochet al, 2007]. Vegetation parameters can
be obtained from polarimetric and interferometnterpretation and analysis of the radar
measurements.

Capabilities

SAR data is well suited for biomass assessmentcapphs because signals of different
wavelengths interact with particular parts of tlegetation structure, making it possible
to account for both standing and under-storey bgsniterferometric and polarimetric
techniques are used to analyze SAR data and iafeopy height and density for biomass
estimation. Estimation of vegetation parametersnfiaterferometric measurements is
affected by sensitivity of lower frequency signads spatial variability of vegetation
height and density<Jrieger et al.,2005]. Polarimetry utilizes the differences in Heape,
orientation and dielectric constant of transmiti@d received radar signal to classify and
extract parameters of natural targets. Improve@ssssent of tree heights and three-
dimensional forest structural information can beaoted by coherently combining
interferometry and polarimetry techniques with diaben optical sensors for forests with
mixed structural formsHrakosq 2006;Lucaset al, 2006].

The X- and C-band are particularly sensitive to lsmamponents such as leaves and
twigs of the canopy whereas longer wavelengths ash-band and P-band tend to
penetrate deeper into the canopy and interactgyromth the tree branches, trunks and
ground Patenaude2003;Siqueiraet al, 1999]. Polarization signatures can be used to
automatically extract positions of trees of intéreBigital surface models can be
generated from radar backscatter measurements droaller wavelength (X- and C-
band) signals while digital elevation models arenpated from the interaction of the
longer wavelength (L- and P-band) signals with gobgurface. Vegetation heights and
tree densities are then estimated from differethetseen the two model¥iergeveret

al., 2006;Wallington et al, 2006; Mette 2007]. This information is then applied to
generalized allometric equations to estimate stapbdiomass over the mapped area. The
input data for this approach still has to be calibd and validated by corresponding
ground measurements as different biomes have eliffellometric constants.

Several studies using airborne SAR have showreatirelationship between radar signal
wavelengths and biomass saturation levels withaarfigm 20 - 200 t Kafor C and L-



band sensors respectively, depending in the e@syshder investigatioihoff, 1995;
Rauste 2005]. Typical savanna woodlands have estimaimahdss densities of up to 70 t
ha' [Viergeveret al 2007]. The ALOS PALSAR sensor offers opporturtidyrelate
backscatter changes to clear-cut in forests aahabyze polarimetric coherence between
satellite visits to detect areas cleared betweemMthday cyclesHranssonet al, 2007;
Erikssonet al, 2003].

Limitations

Quantifying woody biomass using radar remote sengnan emerging discipline and
various research efforts are underway to refinehous and techniques. The subsequent
high hardware and software costs are hamperingdbption of technology in academic
and natural resource management organization. i$Histher complicated by the long
repeat cycles of current satellites e.g. 46 daystife ALOS PALSAR sensor. Future
satellites are expected to reduce the visitingodeny operating in constellatioK¢ch et

al., 2007], albeit at an increased operational cost.

Radar images are characteristically different froptical images. Many of the objects
that are highly visible on optical images are nddible to radar sensors, making it
difficult to identify suitable ground control postfor precise georeferencing of radar
images.Power et al. [2006] points out that although spaceborne radda ds geo-
referenced using onboard GPS systems, manual égesneing allows a more accurate
placement of the SAR image (and the interpretedlt®sin a coordinate system that is
common with GIS layers, elevation models and togplgic data from field surveys.
Corner reflectors provide a possible solution, tktir production and installation costs
may add a considerable amount to the field suruelgét.

Santoset al. [2003] summarizes some of the limitations of magpregetation using L-,
C- and X-band data. Radiation at X-band penetraidg the upper section of the tree
canopy, and as such radar backscatter is onlyecelat the top layer and the crown. C-
band penetrates the leaves but not the brancheake Wwiband encounters leaves and
small branches. Higher frequency P-band signala aressible solutiorRauste2005] as
they can penetrate right down to the ground. Howedevelopment of spaceborne P-
band systems is hindered by signal interferencl tié ionosphere and most modern
communication ultra-high frequency equipmePRafenaude 2003; Rosenqvist et al.
2003]. The long wavelength also poses challengedesigning appropriate apertures
which maintain high spatial resolution without deading the orbital system. The
interference with civilian communication systemss@® the greatest political and
technical challenge as it requires permission frodividual countries to transmit in the
UHF bands during satellite overpasseg){ieiraet al, 1999].

Implications for African savanna woodlands

Quantitative biomass data is increasingly beconangritical component of plans and
policies that address some of the millennium dgvalent goals such as sustainable
environmental management and improvement of hedltis crucial for policy and

decision-making makers to integrate spatial datamfrenergy modeling, biomass
potential, woodland dynamics and socio-economidiegiions to create energy demand



and supply scenarios. However, there is generalfchk of such quantitative biomass

data for use in bioenergy modeling and at the same, there seems to be a serious
paucity of research on the application of modeahneues to quantify woody biomass
in African biomes. Collecting biomass data is caopgied by the sparse and

heterogeneous nature of savanna woodlands and igine eixpenses associated with
conventional biomass assessment techniques. Pé&sttsehave concentrated on

vegetation change detection without quantitativaleation of standing biomass stocks
[Chidumayo 2002].

Optical remote sensing platforms have generate@ faughives of data for coarse and
medium resolution data but radar data is limiteae ©ptical data is two dimensional and
cannot be used to directly retrieve standing wadoidynass. High resolution optical data
is becoming increasingly available but must be usedonjunction with SAR to
differentiate tree species which have spectrattyilar signatures in the visible and near-
visible infra-red ranges of the spectruBillingsley, 1984]. High resolution field data
from ground surveys, high resolution optical remsémsing sensors and also high to
medium resolution spaceborne radar imagery sermergequired to quantify woody
biomass in savanna woodlands and to extrapolateitmo-scale applications.

Radar remote sensing is an emerging discipline astndeveloping countries and is
characterized by low levels of expertise in botadmmic and governmental institutions
involved in vegetation monitoring. This shortcomisgurther compounded by the steep
learning curves for SAR data acquisition, interatieh and analysis as most of the
available personnel is trained in optical remotassey. Other challenges include
accessing data from current and past satellitdoptas and the long revisit period of
some sensors (e.g. 46 days for ALOS PALSAR). Wihnigh resolution airborne
interferometry SAR system¥ijergeveret al 2006] are capable providing vegetation data
at the tree level, such high resolution spacebsystems are lacking for large-scale
characterization of woodlands. The medium to coaspatial resolution limits the
accurate geo-referencing and mapping of subsedRtderived tree signatures before
applying automatic feature extraction routines.

The processing, analysis and dissemination of ¢g@asmé environmental data (including
woody biomass) requires massive investment in feahninstitutional and human
resources Paradzayi and Rither2002]. Data access and sharing are becoming major
problems when compared to data availability dueutwlerdeveloped spatial data
infrastructures in most African countries. It apggethat there is need to develop stronger
institutional and technical interactions among@ecinvolved with biomass management
[Mabowe 2006]. One possible way of enhancing such ddtastructures is to advocate
for the development of the geo-web that offers ipdgges to share, integrate and
leverage geographic knowledge related to bionmaaadgermond2007].

Concluding Remarks

Most African villages are located in remote plasgth very low economic potential that
are not widely covered by both conventional and @GBtvork control points established
by the national mapping organizations. Quantifyingody biomass from SAR data



requires highly accurate ground control networks dite calibration to allow for the
precise positioning of trees. The nature of SARgerg makes it difficult to identify
unique features on SAR images and ground contriakpgcorner reflectors) are required
for improved geo-referencing of SAR imagery. Higleg@sion EDM and/or Differential
GPS surveys should be used to fix these controltpdiecause accurate tree positions are
critical for the determination of polarization sajares of targeted trees.

More research effort must be addressed to the catibn of spaceborne SAR data with
high resolution field and optical data to quantig amount of standing woody biomass
in subtropical savanna woodlands. Fusing data fdifferent platforms such as field
surveys, high resolution optical and radar (ALOSLBAR and TerraSAR) promises to
improve classification and separation of differesee genera or agricultural crod3UR,
2007;Koch et al, 2007]. Research results from airborne SAR plat®have indicated
that using a combination of sensors allows fordsedstimation of quantitative data on
tree heights and standing woody biomaSk(ide and PapathanassipA003; Lucaset
al., 2006;Mette 2007]. This allows for the subsequent combinatdpolarimetric and
interferometric, and automatic feature extractiechnhiques to quantify and extrapolate
available biomass parameters according to prefetmeel species in selected biomes
[Grabitzki 2004;Laliberteet al, 2004].

In southern Africa, there is growing need for imf@tion on energy demand and supply
in rural and low-income urban communities; to assee fulfillment of millennium
development goals and to assist with energy paliplanning and implementation. The
VW Foundation BioModels project is a multi-institutal and inter-disciplinary research
effort seeking to provide decision-makers with duative data on available woody
biomass in the region. The remote sensing companietite research is attempting to
generate quantitative fuelwood biomass data ircsslecase study areas in South Africa,
Mozambique and Zambia. The outcome of this rebemitl contribute to integrated
bioenergy policy planning and implementation preessby availing spatially accurate
guantitative biomass information to drive multi-pase applications such as bioenergy,
socio-economic and woodland dynamics modeling.
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